Mathsarc Education

A learning place to fulfil your dream of success!

IIT JEE Main/Adv

Log, QEE, Relation & Function

SECTION – A (MATHEMATICS)

PART - I

SINGLE OPTION CORRECT (+ 3, - 1, 0)

1.	If α , β , γ are roots of the cubic 2011x ³ + 2x ² + 1 = 0, then which of the following relation is (are) correct?					
	(A) $\alpha^{-1} + \beta^{-1} + \gamma^{-1} = -2011$ (C) $\alpha^2 + \beta^2 + \gamma^2 = (4/2011)$		(B) $(\alpha\beta)^{-1} + (\beta\gamma)^{-1} + (\gamma\alpha)^{-1} = 2$			
			(D) $\alpha^{-2} + \beta^{-2} + \gamma^{-2} = 4$			
2.	Let A = $\begin{cases} x : \frac{ x(x-1) }{(x^2 - 2x)} \end{cases}$	$\left\{\frac{(x+1)^{\frac{3}{2}}\ln(x+2)}{(x-1)(e^{x}-2)} \ge 0\right\} \text{ and}$	$d B = \left\{ a : a > 0, 2 + \sin \theta = \right.$	$= x^2 + \frac{a}{x^2} \forall x \in \mathbb{R} - \{0\}, \ \theta \in \mathbb{R} $ are		
	two sets, then (given $\log_{10} 2 = 0.3010$, . represent modulus function.)					
	$(A) A \subseteq B$	(B) $B \subseteq A$	(C) $A \cap B = \phi$	(D) A \cap B = (0, ln 2)		
3.	Suppose that $ x + y + x - y = 2$. What is the maximum possible value of $x^2 - 6x + y^2$?					
	(A) 5	(B) 6	(C) 7	(D) 8		
4.	How many sequences of zeros and ones of length 20 have all zeroes consecutive, or all the ones consecutive or both?					
	(A) 190	(B) 192	(C) 211	(D) 382		
ROL	ROUGH SPACE					

 $\leftarrow \neg \sim \blacksquare : \textcircled{\odot} \textcircled{\odot} Best of Luck! \textcircled{\odot} \textcircled{\odot} : \blacksquare \sim \mapsto$

CLASS - 12th

	Paragraph for Questions Nos. 5 to 6					
	$A_{0} = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ and 3, then answer the following	L J	$B_n = adj(B_{n-1}), n \in N$ and	d I is an identity matrix of order		
F						
5.	Det. $(A_0 + A_0^2 B_0^2 + A_0^3 + A_0^4 B_0^4 + \dots 10 \text{ terms})$ is equal to					
	(A) 1000	(B) – 800	(C) 0	(D) – 8000		
6.	$B_1 + B_2 + + B_{49}$ is equal to					
	(A) B_0	(B) 7 B ₀	(C) 49 I	(D) 49 B ₀		
MU	LTIPLE OPTION CORREC	CT (+ 4, - 1, 0)				
7.	The graph of the quac	dratic polynomial; y = ax	$x^2 + bx + c$ is as shown in	the figure. Then:		
	(A) $b^2 - 4ac > 0$		(B) b < 0	Y /		
	(C) a > 0		(D) c < 0	X		
8.	Let $f(x) = x^2 - (b+1)^2$)x+b and area of triang	le formed by points (α , 0), (β, 0)		
	and $(0, f(0))$, where α and β are zeroes of f(x) is 3 units, then the value of b, is/are?					
	(A) 3	(B) 1	(C) - 2	(D) - 1		
9.	If $-3 < \frac{x^2 - \lambda x - 2}{x^2 + x + 1} < 2$ for all $x \in \mathbb{R}$, then $[\lambda]$ can be, (where [.] denotes the greatest integer function)					
	(A) - 1	(B) 1	(C) 0	(D) 2		
ROUGH SPACE						

CLASS - 12th

10. If α and β are the roots of $x^2 - p(x+1) - q = 0$, then

(A)
$$(\alpha + 1)(\beta + 1) = 1 - q$$

(B) $(\alpha + 1)(\beta + 1) = 1 + q$
(C) $\frac{(\alpha + 1)^2}{(\alpha + 1)^2 + q - 1} + \frac{(\beta + 1)^2}{(\beta + 1)^2 + q - 1} = q$
(D) $\frac{\alpha^2 + 2\alpha + 1}{\alpha^2 + 2\alpha + q} + \frac{\beta^2 + 2\beta + 1}{\beta^2 + 2\beta + q} = 1$

11. If $f(x) = \cos([\pi^2]x) + \cos([-\pi^2]x)$, where [.] is Greatest integer function, then

(A) $f\left(\frac{\pi}{2}\right) = -1$	(B) $f(\pi) = 1$	(C) $f(-\pi) = 0$	(D) $f\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$
--	------------------	-------------------	--

- 12. If all values of x which satisfies the inequality $\text{Log}_{1/3}(x^2 + 2px + p^2 + 1) \ge 0$ also satisfy the inequality $kx^2 + kx k^2 \le 0$ for all real values of k, then all possible values of p lies in the interval:
 - (A) [-1,1] (B) [0,1] (C) [0,2] (D) [-2,0]

ROUGH SPACE

 $\longleftrightarrow \sim \blacksquare : \textcircled{\odot} \textcircled{\odot} \texttt{Best of Luck!} \textcircled{\odot} \textcircled{\odot} : \blacksquare \sim \mapsto$

PART – II

Integer Type (+ 4, -1, 0).

- 13. Let $f(x) = \left(a + \frac{1}{a}\right)x^2 2x + 1$, where a < 0 and m(a) be the maximum value of f(x). As 'a' varies, then the greatest value of $2 \cdot m(a)$, is?
- 14. If α , β , γ are such that $\alpha + \beta + \gamma = 4$, $\alpha^2 + \beta^2 + \gamma^2 = 6$, $\alpha^3 + \beta^3 + \gamma^3 = 8$, then the value of $\left[\alpha^4 + \beta^4 + \gamma^4\right]$ must be equal to (where [.] denotes the greatest integer function)
- 15. The number of negative integral solutions of $x^2 \cdot 2^{x+1} + 2^{|x-3|+2} = x^2 \cdot 2^{|x-3|+4} + 2^{x-1}$ is ______
- 16. Let (x, y, z) be points with integer co-ordinates satisfying the system of homogeneous equation x + y + z = 0, x + 2y + 3z = 0 and 2x + 3y + 4z = 0, then the number of such points for which $x^2 + y^2 + z^2 \le 12$.
- 17. Let x_1 and x_2 be real solutions of the equation $x^2 + bx + c = 0$ (b, $c \in \mathbb{R}$). If $x_1 x_2 = 4$ and $x_1^2 + x_2^2 = 40$, then the value of $b^2/8$ is _____
- 18. The sum of all integral values of a in [1, 100] for which the equation $x^2 (a-5)x + (a-\frac{15}{4}) = 0$ has at-least one root greater than zero, is a four digit number 501k, then k is_____

ROUGH SPACE

Visit Us: https://www.mathsarc.com

CLASS - 12th

ANSWER KEY						
1. B	2. B	3. D	4. D			
5.	6.	7. A, B, C, D	8. A, C			
9. A, B, C	11. A, C, D	12. A, B, C	13. 3			
14.	15. 0	16. 3	17. 8			
18. 1						

